developed by the

Global Precipitation Measurement Missic

GPM.NASA.GOV / EDUCATION

TWITTER.COM / NASA_RAIN

FACEBOOK.COM / NASA.RAIN

Heating Earth's Surfaces: Clouds

Lab Instructions

Think about this: When you are out on a sunny day and a cloud passes overhead, what changes in how the temperature feels? Explain. Do cloudy days tend to be warmer or cooler than sunny ones? What about cloudy nights? Why might this be the case?

Objective

Students will develop and test a hypothesis about how clouds affect the way a surface heats up and cools down.

<u>Materials</u>

thermometers (2)2-liter soda bottle tops (2)stopwatchconstruction paper circles (2, black, cut to fit in the bottles)clouds cut from foillamp with heat bulb and standclouds cut from foil

Procedure

 Place the bottles side by side on a flat surface, 15-20 centimeters in front of the bulb of the lamp, but don't turn on the lamp yet. (Make sure the distance to each bottle is equal.) Place them so that the light shines on the front of the bottles, not down, and that each bottle will receive the same amount of light. The cut-out clouds covering the front of one of the bottles should face the lamp, blocking some of the lamp's light.

- 2. Under each bottle, place a black construction paper circle, with a thermometer on top of the circle. Make sure you can read the temperature through the back of the bottle.
- 3. Record the starting temperature of each bottle in your data table at "0 minutes."
- 4. Start the stopwatch and turn on the light simultaneously. Record the temperature of each bottle every minute until 10 minutes have passed.

→ CAUTION: The bulb and shade may get very hot. Be careful, and avoid touching either during the experiment.

- 5. At the 10 minutes mark, turn off the light and move it away from the bottles (it will continue to generate heat even when turned off.) Continue to record temperatures every minute for another 10 minutes.
- 6. Plot your data on the graph. Connect the points for the two sets of data, and label one "clear" and the other "cloudy." (Or use two different colors and complete the key.)

Adapted from NASA Lesson Plan - "Investigating the Climate System: Clouds" <u>http://pmm.nasa.gov/sites/default/files/document_files/educational/Clouds_04.pdf</u>

Heating Earth's Surfaces: Clouds

<u>Objective</u>

Students will develop and test a hypothesis about how clouds affect the way a surface heats up and cools down.

<u>Problem</u> (written as a question that will be answered by completing the investigation) How will <u>temperature</u> change in containers with <u>different amounts of cloud cover?</u>

<u>Independent Variable</u> (the factor that is intentionally changed in an investigation) This investigation is designed to see if <u>cloudiness</u>, the independent variable, will have any impact on the heat absorbed from radiation.

<u>Dependent Variable</u> (the factor that changes as a result of the independent variable; it is what is measured to determine if the independent variable has the expected effect)

The dependent variable, <u>temperature</u>, is measured in degrees Celsius (°C) and may change as a result of the different cloud conditions.

<u>Hypothesis</u> (should be written in If [independent variable], then [dependent variable] format and should answer the question posed as the problem)

If bottles with ______ are heated by radiation from a light bulb,

_____ of the air in the clear bottle will **increase**

____ the temperature of the air in the cloudy bottle. After the radiation is

faster than/ slower than /at the same rate as

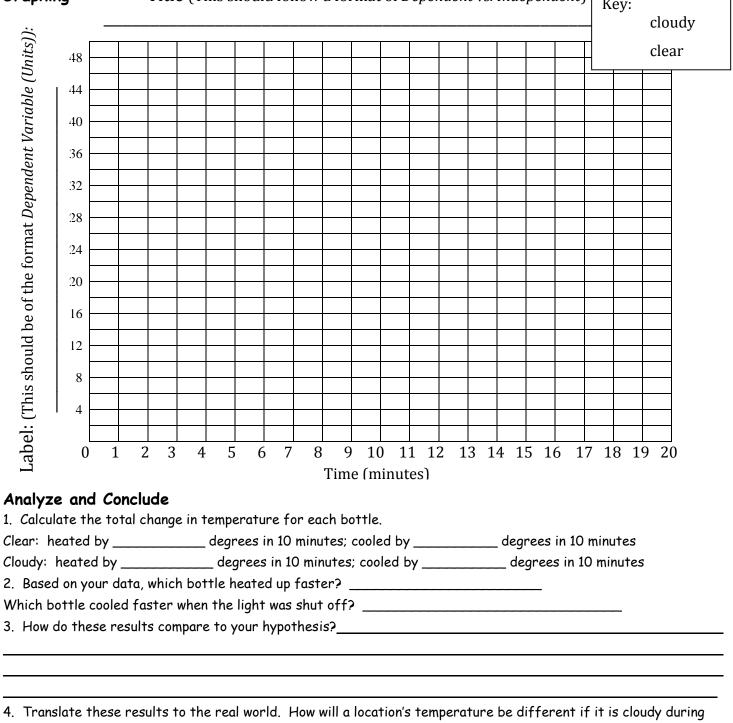
the temperature of the air in the cloudy bottle.

<u>Data</u>

then the

Light Bulb On (radiation simulating daylight hours)

Time (Minute)	0	1	2	3	4	5	6	7	8	9	10
Clear (°C)											
Claude (°C)											
Cloudy (°C)											


Light Bulb Off (radiation simulating nighttime hours)

Time (Minute)	11	12	13	14	15	16	17	18	19	20
Clear (°C)										
Cloudy (°C)										

the day? What about if it is cloudy at night? _____

5. About half of Earth is covered with clouds at any one time. What would happen to worldwide temperatures if that percentage increased? What if it decreased?