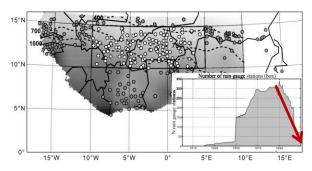
GPM MENTORSHIP PROGRAM

PRECIPITATION ESTIMATES, SCIENCE AND APPLICATIONS

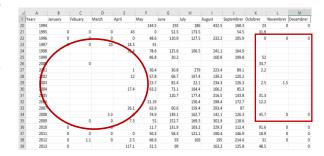
in prep

Characterize the Spatial and Temporal Extreme Precipitation Events over West Africa

Idelbert D. Behanzin¹, Mircea Grecu²


¹The Federal University of Technology, Akure ² NASA GSFC and Morgan State University

MOTIVATION


- Extreme Precipitation Events (EPEs) have significant impacts and precipitations are one of the most essential climatic variables and the key determinants for human security in West Africa (WA) (Behanzin, 2016).
- But, to understand EPEs, early studies and current research predominantly used rain gauge data, as it is often believed that there are the most reliable.
- Unfortunately, little is known about EPEs in WA (Barry et al., 2018; Behanzin, 2015; Engel et al., 2017; Hountondji and Ozer, 2011; Ly et al., 2013; Panthou et al., 2014)
- No clear scientific consensus has yet been reached on EPEs, leading to a debate on whether extreme EPEs is occurring, will continue or not?
- Integrated Multi Satellite-based products can offer an opportunity to advanced understand, and overcome the problem for the benefit of society.

Source: Behanzin, 2020

Fig 1. Existing precipitation gauge over WA has been decreasing drastically over 40 years. *Source: Panthou et al. (2012)*

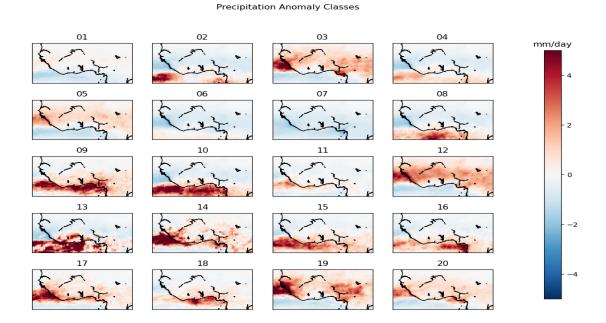
Fig.2: Large fraction of existing data are nested with significant gaps/missing data.

Source: Excerpt of precipitation tipping bucket record,

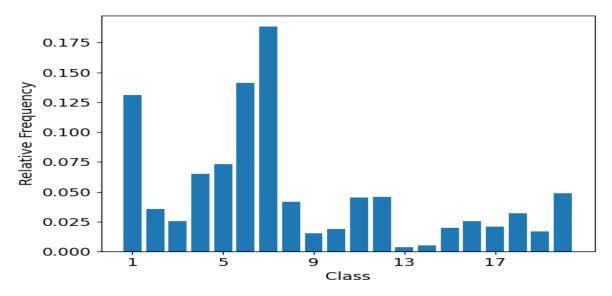
Karimama, Niger River Basin, Benin. (Behanzin, 2014).

Objective: Use IMERG to characterize the spatial and temporal EPEs over WA

Data	Version	Resolutions		Format	Period
		Spatial	Temporal	Format	Period
GPM_3IMERG	Final Run L3 V6	0.1 x 0.1	Daily / Monthly	netCDF / GEOTIFF	2000- present


Methodology

- 10 years (so far), i.e. 2001-2010 of daily IMERG data over West Africa are classified by their similarity into 20 classes
- The frequency of classes/patterns is investigated
- The probabilities of transition from a class (pattern) into another are estimated.


GPM MENTORSHIP PROGRAM

PRECIPITATION ESTIMATES, SCIENCE AND APPLICATIONS

Early results: 10 Years daily IMERG Precipitation Patterns for WA

Relative Frequency of Precipitation Anomaly Pattern (classes)

Next steps.

- The distribution of precipitation will be characterized for each pattern using an Empirical Orthogonal Function analysis
- The Transition Probability Matrix will be used to simulate sequences of patterns (e.g. 5 days, 7 days, etc.) and precipitation anomalies will be generated for each pattern
 - Various measures of extreme values (e.g. probability of exceeding a threshold, accumulation, largest n-values, etc.) will be calculated

THANK YOU!!!